By Anders Törneholm, Linköping University December 23, 2024

Collected at: https://scitechdaily.com/einstein-meets-newton-scientists-demonstrate-new-aspect-of-wave-particle-duality/

Linköping University’s experiment confirms a key theoretical link between quantum mechanics and information theory, highlighting future implications for quantum technology and secure communication.

Researchers at Linköping University and their collaborators have successfully confirmed a decade-old theory linking the complementarity principle—a fundamental concept in quantum mechanics—with information theory. Their study, published in the journal Science Advances, provides valuable insights for understanding future quantum communication, metrology, and cryptography.

“Our results have no clear or direct application right now. It’s basic research that lays the foundation for future technologies in quantum information and quantum computers. There’s enormous potential for completely new discoveries in many different research fields,” says Guilherme B Xavier, researcher in quantum communication at Linköping University, Sweden.

Historical Context of Wave-Particle Duality

To understand what the researchers have demonstrated, we must start from the beginning. That light can be both particles and waves is one of the most illogical – but at the same time fundamental – characteristics of quantum mechanics. This is called wave-particle duality.

Guilherme B Xavier
Guilherme B Xavier, researcher in quantum communication at Linköping University. Credit: Magnus Johansson

The theory dates back to the 17th century when Isaac Newton suggested that light is composed of particles. Other contemporary scholars believed that light consists of waves. Newton finally suggested that it might be both without being able to prove it. In the 19th century, several physicists performed various experiments that showed that light actually consisted of waves.

However, around the early 1900s, both Max Planck and Albert Einstein challenged the theory that light is just waves. However, it was not until the 1920s that physicist Arthur Compton could show that light also had kinetic energy, a classical particle property. The particles were named photons. Thus, it was concluded that light can be both particles and waves, exactly as Newton suggested. Electrons and other elementary particles also exhibit this wave-particle duality.

The Complementarity Principle and Entropic Uncertainty

However, it is not possible to measure the same photon in the form of a wave and a particle. Depending on how the photon is measured, either waves or particles are visible. This is known as the complementarity principle, which was developed by Niels Bohr in the mid-1920s. It states that no matter what one decides to measure, the combination of wave and particle characteristics must be constant.

Experimental Setup for Complementarity Principle and Information Theory Research
With the help of a new experiment, researchers at Linköping University, among others, have succeeded in confirming a ten-year-old theoretical study, which connects one of the most fundamental aspects of quantum mechanics – the complementarity principle – with information theory. Credit: Magnus Johansson

In 2014, a research team from Singapore demonstrated mathematically a direct connection between the complementarity principle and the degree of unknown information in a quantum system, the so-called entropic uncertainty. This connection means that no matter what combination of wave or particle characteristic of a quantum system is looked at, the amount of unknown information is at least one bit of information, i.e., the unmeasurable wave or particle.

Linköping University’s Experimental Confirmation

Researchers from Linköping University, together with colleagues from Poland and Chile, have now confirmed the Singapore researchers’ theory in reality with the help of a new type of experiment.

“From our perspective, it’s a very direct way to show basic quantum mechanical behaviour. It’s a typical example of quantum physics where we can see the results, but we cannot visualise what is going on inside the experiment. And yet it can be used for practical applications. It’s very fascinating and almost borders on philosophy,” says Guilherme B Xavier.

In their new experiment set-up, the Linköping researchers used photons moving forward in a circular motion, called orbital angular momentum, unlike the more common oscillating motion, which is up and down. The choice of orbital angular momentum allows for future practical applications of the experiment because it can contain more information.

The measurements are made in an instrument commonly used in research called an interferometer, where the photons are shot at a crystal (beam splitter) that splits the path of the photons into two new paths, which are then reflected so as to cross each other onto a second beam splitter and then measured as either particles or waves depending on the state of this second device.

Joakim Argillander and Daniel Spegel-Lexne
Joakim Argillander and Daniel Spegel-Lexne, PhD students in the Department of Electrical Engineering at LiU. Credit: Magnus Johansson

One of the things that makes this experiment set-up special is that the second beam splitter can be partially inserted by the researchers into the path of the light. This makes it possible to measure light as waves, particles, or a combination of them in the same setup.

According to the researchers, the findings could have many future applications in quantum communication, metrology, and cryptography. But there is also much more to explore at a basic level.

“In our next experiment, we want to observe the behaviour of the photon if we change the setting of the second crystal right before the photon reaches it. It would show that we can use this experimental set-up in communication to securely distribute encryption keys, which is very exciting,” says Daniel Spegel-Lexne, PhD student in the Department of Electrical Engineering.

Reference: “Experimental demonstration of the equivalence of entropic uncertainty with wave-particle duality” by Daniel Spegel-Lexne, Santiago Gómez, Joakim Argillander, Marcin Pawłowski, Pedro R. Dieguez, Alvaro Alarcón and Guilherme B. Xavier, 6 December 2024, Science Advances.
DOI: 10.1126/sciadv.adr2007

Leave a Reply

Your email address will not be published. Required fields are marked *

0 0 votes
Article Rating
Subscribe
Notify of
guest
0 Comments
Inline Feedbacks
View all comments