By Michael Miller, University of Cincinnati December 15, 2024

Collected at: https://scitechdaily.com/the-mysterious-science-experiment-that-could-answer-why-we-exist/

Physicists are closer than ever to answering fundamental questions about the origins of the universe by learning more about its tiniest particles.

Scientists are intensifying research into neutrinos, mysterious particles that pass through matter almost unhindered. Key goals include studying how neutrinos change types and searching for previously unknown varieties, which could transform current understanding of physics.

The Mystery of the Sterile Neutrino

University of Cincinnati Professor Alexandre Sousa has detailed the next decade of global research into neutrinos, incredibly tiny particles that travel at nearly the speed of light and pass through virtually everything by the trillions each second.

Neutrinos are the most abundant particles with mass in the universe, making them a key focus for scientists seeking to understand fundamental aspects of physics.

These particles are produced in various processes, including nuclear fusion in the sun, radioactive decay in nuclear reactors and Earth’s crust, and experiments in particle accelerators. As they move, neutrinos can switch between three types, or “flavors,” in a process that continues to intrigue researchers.

But unexpected experimental results made physicists suspect there might be another neutrino flavor, called a sterile neutrino because it appears immune to three of the four known “forces.”

“Theoretically, it interacts with gravity, but it has no interaction with the others, weak nuclear forcestrong nuclear force, or electromagnetic force,” Sousa said.

Alexandre Sousa Plastic Toy
University of Cincinnati Professor Alexandre Sousa uses a plastic toy to demonstrate how neutrinos change ‘flavor’ as they pass through the universe. Credit: Joseph Fuqua II

Neutrino Research Collaborations and Goals

In a new white paper published in the Journal of Physics G, Sousa and his co-authors discuss experimental anomalies in neutrino exploration that have baffled researchers.

The paper was a product of the Particle Physics Community Planning Exercise, referred to as “Snowmass 2021/2022.“

Representatives in high energy physics gather every 10 years to collaborate on the future of particle physics in the United States and its international partners.

Their collective vision is articulated and confronted with science funding scenarios by the Particle Physics Project Prioritization Panel, or P5, whose final report issued in 2023 made direct recommendations to Congress about funding the projects.

Sousa was a corresponding author of the paper that discusses some of the most promising projects coming in the next decade.

UC Professor Jure Zupan, UC Associate Professor Adam Aurisano, UC visiting scholar Tarak Thakore, UC postdoctoral fellow Michael Wallbank and UC physics students Herilala Razafinime and Miriama Rajaoalisoa also contributed to the paper.

“Neutrinos seem to hold the key to answering these very deep questions.”

Physicist Alexandre Sousa, UC College of Arts and Sciences

Jure Zupan
UC physics Professor Jure Zupan co-authored a paper outlining the next 10 years of neutrino research. Credit: Joseph Fuqua II/UC

Future Prospects in Neutrino Physics

“Progress in neutrino physics is expected on several fronts,” Zupan said.

Besides the search for sterile neutrinos, Zupan said physicists are looking at several experimental anomalies — disagreements between data and theory — that they will be able to test in the near future with the upcoming experiments.

Learning more about neutrinos could upend centuries of our understanding about physics. Several neutrino projects have been recognized with the world’s top scientific award, the Nobel Prize, most recently with the discovery of neutrino oscillations receiving the 2015 Nobel Prize in Physics. Countries such as the United States are investing billions of dollars into these projects because of the immense scientific interest in pursuing these questions.

One question is why the universe has more matter than antimatter if the Big Bang created both in equal measure. Neutrino research could provide the answer, Sousa said.

“It might not make a difference in your daily life, but we’re trying to understand why we’re here,” Sousa said. “Neutrinos seem to hold the key to answering these very deep questions.”

Deep Underground Neutrino Experiment Infographic
The Deep Underground Neutrino Experiment will measure neutrino oscillations by studying a neutrino that will be sent from Fermilab to the DUNE detectors at the Sanford Underground Neutrino Facility. The experiment will use a muon neutrino beam created at Fermilab’s Long-Baseline Neutrino Facility and send it 800 miles/1300 kilometers straight through the earth to South Dakota. By the time the neutrinos arrive in South Dakota, only a small fraction of neutrinos will be detected as muon neutrinos. Most neutrinos will interact as electron and tau neutrinos. Credit: Fermilab

DUNE: The Cutting-Edge of Neutrino Experiments

Sousa is part of one of the most ambitious neutrino projects called DUNE or the Deep Underground Neutrino Experiment conducted by the Fermi National Accelerator Laboratory. Crews have excavated the former Homestake gold mine 5,000 feet underground to install neutrino detectors. It takes about 10 minutes just for the elevator to reach the detector caverns, Sousa said.

Researchers put detectors deep underground to shield them from cosmic rays and background radiation. This makes it easier to isolate the particles generated in experiments.

The experiment is set to begin in 2029 with two of its detector modules measuring neutrinos from the atmosphere. But starting in 2031, researchers at Fermilab will shoot a high-energy beam of neutrinos 800 miles through the Earth to the waiting detector in South Dakota and a much closer one in Illinois. The project is a collaboration of more than 1,400 international engineers, physicists, and other scientists.

“With these two detector modules and the most powerful neutrino beam ever we can do a lot of science,” Sousa said. “DUNE coming online will be extremely exciting. It will be the best neutrino experiment ever.”

Alexandre Sousa
University of Cincinnati Professor Alexandre Sousa uses a plastic toy to demonstrate how neutrinos change ‘flavor’ as they pass through the universe. Credit: Joseph Fuqua II

Conclusion and Future Directions

The paper was an ambitious undertaking, featuring more than 170 contributors from 118 universities or institutes and 14 editors, including Sousa.

“It was a very good example of collaboration with a diverse group of scientists. It’s not always easy, but it’s a pleasure when it comes together,” he said.

Meanwhile, Sousa and UC’s Aurisano are also involved in another Fermilab neutrino experiment called NOvA that examines how and why neutrinos change flavor and back. In June, his research group reported on their latest findings, providing the most precise measurements of neutrino mass to date.

Another major project called Hyper-Kamiokande, or Hyper-K, is a neutrino observatory and experiment under construction in Japan. Operations there could begin as early as 2027 as it, too, looks for evidence of sterile neutrinos, among other research questions.

“That should hold very interesting results, especially when you put them together with DUNE. So the two experiments combined will advance our knowledge immensely,” Sousa said. “We should have some answers during the 2030s.”

UC’s Zupan said these multibillion-dollar projects hold promise for answering core questions about matter and antimatter and the origins of the universe.

“So far we know of only one such parameter in particle physics that has a nonzero value, and has to do with the properties of quarks,” Zupan said. Whether or not something similar also is present for the neutrinos is an interesting open question.”

Sousa said scientists around the world are working on many other neutrino experiments that could provide answers or generate new questions.

And then?

“Then I’ll be thinking about retirement,” Sousa joked.

Reference: “White paper on light sterile neutrino searches and related phenomenology” by M A Acero, C A Argüelles, M Hostert, D Kalra, G Karagiorgi, K J Kelly, B R Littlejohn, P Machado, W Pettus, M Toups, M Ross-Lonergan, A Sousa, P T Surukuchi, Y Y Y Wong, W Abdallah, A M Abdullahi, R Akutsu, L Alvarez-Ruso, D S M Alves, A Aurisano, A B Balantekin, J M Berryman, T Bertólez-Martínez, J Brunner, M Blennow, S Bolognesi, M Borusinski, T Y Chen, D Cianci, G Collin, J M Conrad, B Crow, P B Denton, M Duvall, E Fernández-Martinez, C S Fong, N Foppiani, D V Forero, M Friend, A García-Soto, C Giganti, C Giunti, R Gandhi, M Ghosh, J Hardin, K M Heeger, M Ishitsuka, A Izmaylov, B J P Jones, J R Jordan, N W Kamp, T Katori, S B Kim, L W Koerner, M Lamoureux, T Lasserre, K G Leach, J Learned, Y F Li, J M Link, W C Louis, K Mahn, P D Meyers, J Maricic, D Markoff, T Maruyama, S Mertens, H Minakata, I Mocioiu, M Mooney, M H Moulai, H Nunokawa, J P Ochoa-Ricoux, Y M Oh, T Ohlsson, H Päs, D Pershey, R G H Robertson, S Rosauro-Alcaraz, C Rott, S Roy, J Salvado, M Scott, S H Seo, M H Shaevitz, M Smiley, J Spitz, J Stachurska, M Tammaro, T Thakore, C A Ternes, A Thompson, S Tseng, B Vogelaar, T Weiss, R A Wendell, R J Wilson, T Wright, Z Xin, B S Yang, J Yoo, J Zennamo, J Zettlemoyer, J D Zornoza, J Zupan, S Ahmad, E Arrieta-Diaz, V S Basto-Gonzalez, N S Bowden, B C Cañas, D Caratelli, C V Chang, C Chen, T Classen, M Convery, G S Davies, S R Dennis, Z Djurcic, R Dorrill, Y Du, J J Evans, U Fahrendholz, J A Formaggio, B T Foust, H Frandini Gatti, D Garcia-Gamez, S Gariazzo, J Gehrlein, C Grant, R A Gomes, A B Hansell, F Halzen, S Ho, J Hoefken Zink, R S Jones, P Kunkle, J-Y Li, S C Li, X Luo, Yu Malyshkin, C J Martoff, D Massaro, A Mastbaum, R Mohanta, H P Mumm, M Nebot-Guinot, R Neilson, K Ni, J Nieves, G D Orebi Gann, V Pandey, S Pascoli, G Paz, A A Petrov, X Qian, M Rajaoalisoa, S H Razafinime, C Roca, G Ron, B Roskovec, E Saul-Sala, L Saldaña, D W Schmitz, K Scholberg, B Shakya, P L Slocum, E L Snider, H Th J Steiger, A F Steklain, M R Stock, F Sutanto, V Takhistov, R Tayloe, Y-D Tsai, Y-T Tsai, D Venegas-Vargas, M Wallbank, E Wang, P Weatherly, S Westerdale, E Worcester, W Wu, G Yang and B Zamorano, 29 October 2024, Journal of Physics G: Nuclear and Particle Physics.
DOI: 10.1088/1361-6471/ad307f

Leave a Reply

Your email address will not be published. Required fields are marked *

0 0 votes
Article Rating
Subscribe
Notify of
guest
0 Comments
Inline Feedbacks
View all comments